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ABSTRACT 
This paper documents the development of ml.lib: a set of open-
source tools designed for employing a wide range of machine 
learning techniques within two popular real-time programming 
environments, namely Max and Pure Data. ml.lib is a cross-
platform, lightweight wrapper around Nick Gillian’s Gesture 
Recognition Toolkit, a C++ library that includes a wide range 
of data processing and machine learning techniques. ml.lib 
adapts these techniques for real-time use within popular data-
flow IDEs, allowing instrument designers and performers to 
integrate robust learning, classification and mapping approaches 
within their existing workflows. ml.lib has been carefully de-
signed to allow users to experiment with and incorporate ma-
chine learning techniques within an interactive arts context with 
minimal prior knowledge. A simple, logical and consistent, 
scalable interface has been provided across over sixteen exter-
nals in order to maximize learnability and discoverability. A 
focus on portability and maintainability has enabled ml.lib to 
support a range of computing architectures—including ARM—
and operating systems such as Mac OS, GNU/Linux and Win-
dows, making it the most comprehensive machine learning 
implementation available for Max and Pure Data. 
Author Keywords 
Machine Learning, Max, Pure Data, Gesture, Classification, 
Mapping, Artificial Neural Networks, Support Vector Ma-
chines, Regression 

ACM Classification 
I.2.6 [Artificial Intelligence] Induction, H.5.5 [Information 
Interfaces and Presentation] Sound and Music Computing. 

1. INTRODUCTION 
The term ‘Machine Learning’ refers to a scientific discipline and 
associated range of techniques that explore the construction and study 
of algorithms that can ‘learn’ from data through induction or ‘by 
example’ [21]. Typically machine learning techniques are ‘black box’ 
systems that can deduce appropriate outputs from given inputs based 
on a statistical model generated from sufficient and appropriate train-
ing data. Supervised machine learning algorithms take a set of labeled 
feature vectors (lists of values that describe features of a class), which 
are used to ‘train’ the machine learning algorithm and generate a 
model. Once trained, a classification system can output an estimate 
for the class of unlabeled feature vectors. In the case of regression 
algorithms, a continuous value is given as output rather than a dis-
crete class. Unsupervised machine learning algorithms take a set of 
unlabeled feature vectors and partition them into clusters based on 

some measure of similarity. 
Dataflow programming languages offer several important advantages 
for the NIME community and its neighbors: first, they allow artists, 
designers and researchers without a deep background in computer 
science to experiment with complex computational ideas and develop 
intricate systems for audio and video analysis, synthesis, gestural 
control and more; second, in comparison with scripting based lan-
guages, dataflow programming languages allow for very rapid proto-
typing of multi-media software, albeit the mastery of these environ-
ments requires significant time and investment from the practitioners; 
third, they allow for integration of a wide range media (e.g. sound, 
image, physical computing, etc.) within the same environment and 
with minimal modifications to the same blocks of code [31]; fourth, 
by hiding certain low-level considerations of control programming 
(e.g. threading, garbage collection, etc.) dataflow IDEs allow for 
much more intricate control of time and rather intricate design of 
time-based behavior; finally, the standard practice for Max and Pure 
Data (PD) externals—compiled C/C++ code that adds functionality 
to the standard distributions—to be accompanied by a help file—an 
exemplary program that documents the external and offers and inter-
active example—make for a very suitable way to introduce new users 
to machine learning; we have therefore invested significant time in 
producing help files that convey a basic understanding of what each 
of the ml.lib externals does. 

The most widely used machine learning algorithms have long been 
standardized and bindings in a broad range of programming lan-
guages are available.  As an example: the most commonly used sup-
port vector machine library, Chang et al.’s libsvm [5] was first re-
leased in 2001 and iterated several times in the following decade, and 
cited over 20,000 times according to Google Scholar. Its usage is 
pervasive throughout human-computer interaction research. While a 
number of researchers within the NIME community have document-
ed their experimentation with machine learning techniques (see 
BACKGROUND), development remains scattered; a comprehen-
sive, open-source, cross-platform and user-friendly package for work-
ing with machine learning within dataflow environments does not 
exist. In addition to this lack, the authors’ experiences as teachers 
have also been an important motivation for this project: we note that 
despite the level of ambition and sophistication in our students’ ap-
proaches to designing NIME, their approach to the general problem 
of ‘mapping’ remains primarily within the realm of arithmetic or 
discrete calculus at best. The documentation provided with ml.lib 
therefore reframes some common mapping exercises from the class-
room (e.g. recognizing the orientation of a mobile phone based on its 
three-dimensional accelerometer data) that require many arithmetic 
operations, as trivial machine learning problems in an effort to con-
vey that machine learning is in fact approachable for a broad range of 
users. 

2. BACKGROUND 
There is extensive use of machine learning within the domain of 
sound and music research. Recent contributions to this field include 
several categories of applications: gesture analysis, mapping and 
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control of sound synthesis [2, 4, 12, 14, 16, 20, 22, 29] parsing and 
segmentation [3], and algorithmic composition [6]. A number of 
existing projects implement various machine learning techniques in 
Max.  As early as 1991, Wessel et al. implemented a real-tine artifi-
cial neural network for control of synthesis parameters in Max [30]. 
Later work from CNMAT includes Schmeder’s use of support vector 
machines applied to pitch predictions [27]. The MnM toolbox from 
Bevilacqua et al. implements ‘multidimensional linear mapping […] 
as basic module to build complex n-to-m mapping’; the MnM pack-
age of Max externals also includes a principal component analysis 
module which can also be of use in creating complex real-time map-
pings [1]. It is worth noting that MnM relies on FTM—a shared 
library for Max for static and dynamic creation of complex data struc-
tures and therefore requires an additional step for integration into a 
user’s workflow, a step that may be non-trivial depending on the 
complexity of the user’s existing patch.  Cont et al.’s range of work-
leading to the development of the sophisticated score-following en-
gine Antescofo [7, 8, 9, 11] are among the most advanced examples 
of machine learning at work within the Max environment.  Cont et al. 
also created neural network implementation for PD, applied to ges-
ture mapping [10].Smith and Garnett developed a machine learning 
library for Max that implements adaptive resonance theory, self-
organizing maps and spatial encoding [28]. 

A number of externals also exist for the PD environment. The most 
coherent and widely-used being the ANN library by Davide Morelli1. 
This consists of a multilayer perceptron and a time-delay network, 
implemented as a wrapper around the widely-used FANN library 
[24] and a self-organizing map implementation, featuring Instar, 
Outstar and Kohonen learning rules. A Genetic Algorithm implemen-
tation has been developed by Georg Holzman using the flext frame-
work, and is therefore available for both Max and PD. There also 
exists a k-NN (k’s nearest neighbor) external, originally developed by 
Fujinaga and MacMillan [15] and now maintained by Jamie Bullock. 
A plan was proposed to develop an SVM external as part of the 2009 
Google Summer of Code2, but to the knowledge of the current au-
thors, this was never realized.  

3. IMPLEMENTATION 
Our design goals in implementing a suite of machine learning ex-
ternals are as follows: 

• To provide an exhaustive range of machine learning tech-
niques for Max and PD 

• To support the main hardware and software platforms 
supported by Max and PD 

• To make machine learning techniques usable and accessi-
ble, even for users with no prior knowledge 

• To be efficient enough to run classification or regression in 
firm real-time on CPU's from 700 MHz 

• To develop a ‘standard’ implementation that would be 
widely adopted and be maintained for the foreseeable fu-
ture 

In addition to these design goals, a number of usage assumptions 
were also made: 

• That externals would operate in a context allowing read / 
write to disk, allowing save / load of data models and other 
state 
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• That users would be responsible for providing appropriate 
pre- and post-processing steps, e.g. filtering, normalization 

3.1. GRT 
Given the range of existing machine learning libraries available for 
C and C++, it was decided that given the limited development re-
sources available, the best approach would be to develop a wrapper 
around an existing library rather than starting from scratch. An 
initial survey was conducted and a range of libraries were consid-
ered including Dlib3, mlpack4 and Shark5. We also considered 
using a collection of C libraries for example libsvm (for Support 
Vector Machines). After considering the pros and cons of each 
library, we decided to base ml.lib on the Gesture Recognition 
Toolkit by Nick Gillian [17] due to its wide range of implemented 
algorithms, simple design, straightforward C++ interface, pre- and 
post-processing functions and orientation towards artistic applica-
tions, specifically real-time gesture analysis. 

3.2. flext 
Max and PD both provide C APIs for developing external ob-
jects. Whilst the APIs are superficially similar, there are enough 
differences to mean that in supporting both environments, strat-
egies must be developed for effective code reuse. One approach 
is to use C macros to conditionally include environment-
specific code blocks. This may be sufficient for smaller pro-
jects, but for larger projects it degrades readability and creates 
an unnecessary maintenance burden. An alternative approach is 
to use the flext API, by Thomas Grill [18], an abstract object-
oriented C++ interface that provides a common layer, compati-
ble with both Max and PD. flext is a compile-time dependency 
meaning that it places no additional installation burden on the 

end user. flext also has the advantage that through a relatively 
modern OOP style, and a set of convenience functions, it ena-
bles the programmer to write leaner, more readable and more 
maintainable code than is possible with the conventional C 
APIs for Max and PD. 

3.3. A Maintainable 'DRY' Wrapper 
One of the goals of the project has been to develop a library that 
is maintainable, and can be supported in the long term. The first 
step in achieving this has been to make the source code availa-
ble under the GNU General Public License version 2 in a public 
GitHub repository. This provides a well-managed workflow 
enabling users and developers to file support issues, and to easi-
ly contribute to the project through GitHub ‘pull requests’, 
which means patches can be reviewed before being incorpo-

                                                
3 http://dlib.net/ml.html 
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rated into the codebase, whilst the GPL license forbids closed-
source forks that may prevent fixes and enhancements being 
contributed back to their upstream sources.  

Another strategy used to ensure maintainability was to adhere 
strongly to DRY (don’t repeat yourself) principles in the devel-
opment of the wrapper code [19]. This was achieved by devel-
oping a number of generic abstract base classes (ml_base, ml, 
ml_classification and ml_regression) implementing functionality 
common to the majority of wrapped classes in the GRT library. 
These classes exploit C++’s runtime polymorphism to call 
common child class methods in GRT through a reference to a 
base class instance returned by a concrete child. That is: 
ml_classification and ml_regression must both implement the pure 
virtual method get_MLBase_instance() and all children of 
ml_classification and ml_regression must implement the pure virtual 
methods get_Classifier_instance() and get_Regressifier_instance() re-
spectively. This means that all common functionality can be 
implemented in ml_base, by calling methods through a reference 
to GRT::MLBase from which the majority of GRT classes derive. 
Only algorithm-specific attributes and methods are implement-
ed in children of ml_classification and ml_regression, making the 
wrapper code very lean, readable and keeping repetition to a 
minimum. The current ratio of wrapper code to original sources 
is 5k SLOC to 41k SLOC or approximately 1:10. 

4. LIBRARY DESIGN 
From an end-user perspective, we aimed to provide the best 
possible experience by maximizing learnability and discovera-
bility within the ml.lib library. This was achieved by establish-
ing a convention of consistent and logical object, message and 
attribute naming, and by designing a simple and consistent 
workflow across common object groups. In some cases, it was 
sufficient to follow the well thought-out patterns established in 
GRT, but in others further abstraction was necessary. Further-
more, the aim was not simply to wrap GRT, exposing every 
detail of the GRT API, but rather to provide a somewhat ab-
stracted set of objects conforming to the idioms and user expec-
tations of dataflow environments. ml.lib objects follow the 
naming convention ml.* where ‘*’ is an abbreviated form of the 
algorithm implemented by the object. 

Objects fall into one of six categories: 
Pre-processing: pre-process data prior to used as input to a 
classification or regression object 
Post-processing: post-process data after being output from a 
classification or regression object 
Feature extraction: extract ‘features’ from control data. Fea-
ture vectors can be used as input to classification or regression 
objects 
Classification: take feature vectors as input, and output a value 
representing the class of the input. For example an object de-
tecting hand position might output 0 for left, 1 for right, 2 for 
top and 3 for bottom. 
Regression: perform an M x N mapping between an input vec-
tor and an output vector with one or more dimensions. For ex-
ample an object may map x and y dimensions of hand position 
to a single dimension representing the distance from origin (0, 
0) 
Clustering: partition N unlabeled vectors into M clusters 
At the time of writing, classification, regression and several 
feature extraction algorithms are implemented. Full details of 
these are outlined in section 6. 

In order to reduce complexity, and conform to usability best 
practices a simple modeless workflow was devised (Fig. 1). 
This workflow was based on an abstraction of the simplest pos-
sible steps required to add exemplars to a machine learning 
system, train it, and use the trained model to map unknown 
inputs to outputs. The aim of this workflow is to make machine 
learning techniques usable on musical problems and by users 
who are not machine learning experts. The ability to save and 
load both data sets and trained models allows for easy compari-
son and debugging between data sets and algorithms. Although 
threaded training is not yet implemented, training is very 
quick—perceptually instantaneous in our tests (section 6)—
allowing for rapid ‘exploratory’ iterations for experimenting 
with algorithm parameters as described in [13]. All classifica-
tion and regression objects in the library have exactly one inlet 
and two outlets. The inlet accepts a number of common ‘meth-
od’ messages: 

add <class> <values…> A method used to add training vectors as 
exemplars for the machine learning algorithm, where <class> is 
an integer identifying the class corresponding to a vector of 2 or 
more values 

train Once an adequate number of training vectors have been 
added, this method is used to train the algorithm and generate 
an in-memory model  

write <path> Write the current in-memory training data and / or 
model (if available) to file 

read <path> Read the training data and / or model into memory 
from file given by <path> 

map <values…> Perform classification or regression on the input 
vector given by <values…> and send the result to the left outlet  

clear Remove in-memory training data and / or model 

help Post information to the Max or PD console about supported 
methods and attributes for the current object 

For algorithms that deal explicitly with time series, such as 
Dynamic Time Warping, an additional record message is used to 
place the object in record mode (the one exception to the 
modeless design)—vectors add-ed between record 1 and record 0 
are treated as contiguous time series. The inlet can also be used 
for setting the state of attributes. Here, the term ‘attributes’ 
refers to ‘stored object state’ following the flext convention, not 
Max attributes. flext attributes can additionally be set using 
object creation arguments, e.g. @scaling 1. There are many ob-
ject-specific attributes corresponding to the unique configura-
tion parameters of each ML algorithm. The only common at-
tributes are scaling (0/1), which toggles automatic pre-scaling for 
input vectors and probs (0/1), which toggles the output of class 
probabilities to the right outlet. The left outlet is used for classi-
fication and regression output values. 

5. MAX AND PURE DATA EXTERNALS 
Given that ml.lib primarily wraps the functionality of GRT, the 
following sections (5.1–5.14) are based on the excellent GRT 
official documentation6 (as indicated by single quotes), used 
here with kind permission of the original author. 

                                                
6 http://www.nickgillian.com/software/grt 



 

 

5.1 ml.adaboost: Adaptive Boosting 
‘AdaBoost (Adaptive Boosting) is a powerful classifier that 
works well on both basic and more complex recognition prob-
lems. AdaBoost works by creating a highly accurate classifier 
by combining many relatively weak and inaccurate classifiers. 
AdaBoost therefore acts as a meta algorithm, which allows you 
to use it as a wrapper for other classifiers.’ 

5.2 ml.dtree: Decision Trees 
‘Decision Trees are conceptually simple classifiers that work 
well on even complex classification tasks. Decision Trees parti-
tion the feature space into a set of rectangular regions, classify-
ing a new datum by finding which region it belongs to.’ 
‘A decision tree is a flowchart-like structure in which each in-
ternal node represents a “test” on an attribute (e.g. whether a 
coin flip comes up heads or tails), each branch represents the 
outcome of the test and each leaf node represents a class label 
(decision taken after computing all attributes). The paths from 
root to leaf represents classification rules.’ 

5.3 ml.dtw: dynamic time warping 
‘The DTW algorithm is a supervised learning algorithm that can 
be used to classify any type of N-dimensional, temporal signal. 
The DTW algorithm works by creating a template time series 
for each gesture that needs to be recognized, and then warping 
the real-time signals to each of the templates to find the best 
match. The DTW algorithm also computes rejection thresholds 
that enable the algorithm to automatically reject sensor values 
that are not the K gestures the algorithm has been trained to 
recognize (without being explicitly told during the prediction 
phase if a gesture is, or is not, being performed). In time series 
analysis, dynamic time warping (DTW) is an algorithm for 
measuring similarity between two temporal sequences, which 
may vary in time or speed. For instance, similarities in walking 
patterns could be detected using DTW, even if one person was 
walking faster than the other, or if there were accelerations and 
decelerations during the course of an observation. DTW has 
been applied to temporal sequences of video, audio, and 
graphics data—indeed, any data which can be turned into a 
linear sequence can be analyzed with DTW.’ 

5.4 ml.gmm: Gaussian mixture models 
‘The Gaussian Mixture Model Classifier (GMM) is basic but 
useful supervised learning classification algorithm that can be 
used to classify a wide variety of N-dimensional signals.’ 

5.5 ml.hmm: hidden Markov models 
‘Hidden Markov Models are powerful classifiers that work well 
on temporal classification problems when you have a large 
training dataset.’ 

5.6 ml.knn: k-nearest neighbors 
‘The K-Nearest Neighbor (KNN) Classifier is a simple classifi-
er that works well on basic recognition problems, however it 
can be slow for real-time prediction if there are a large number 
of training examples and is not robust to noisy data. In pattern 
recognition, the k-Nearest Neighbors algorithm (or k-NN for 
short) is a non-parametric method used 
for classification and regression. In both cases, the input con-
sists of the k closest training examples in the feature space.’ 

5.7 ml.linreg: linear regression 
‘In statistics, linear regression is an approach for modeling the 
relationship between a scalar dependent variable y and one or 
more explanatory variables denoted X. The case of one explana-
tory variable is called simple linear regression. For more than 

one explanatory variable, the process is called multiple linear 
regression.’ 

5.8 ml.logreg: logistic regression 
‘Logistic regression measures the relationship between the cat-
egorical dependent variable and one or more independent varia-
bles, which are usually (but not necessarily) continuous, by 
using probability scores as the predicted values of the depend-
ent variable.’ 

5.9 ml.mindist: minimum distance 
‘The MinDist algorithm is a supervised learning algorithm that 
can be used to classify any type of N-dimensional signal. The 
MinDist algorithm works by fitting M clusters to the data from 
each class during the training phase. A new sample is then clas-
sified by finding the class that has the cluster with the minimum 
distance (Euclidean) to the new sample.’ 

5.10 ml.mlp: multi-layer perceptron 
‘The MLP algorithm is a supervised learning algorithm that can 
be used for both classification and regression for any type of N-
dimensional signal. A multilayer perceptron (MLP) is 
a feedforward artificial neural network model that maps sets of 
input data onto a set of appropriate outputs. A MLP consists of 
multiple layers of nodes in a directed graph, with each layer 
fully connected to the next one. ’ 

5.11 ml.randforest: random forests 
‘Random Forests are an ensemble learning method that operate 
by building a number of decision trees at training time and out-
putting the class with the majority vote over all the trees in the 
ensemble. Random forests are an ensemble learning method 
for classification (and regression) that operate by constructing a 
multitude of decision trees at training time and outputting the 
class that is the mode of the classes output by individual trees. 
The algorithm for inducing a random forest was developed 
by Leo Breiman and Adele Cutler, and ‘Random Forests’ is 
their trademark. The term came from random decision for-
ests that was first proposed by Tin Kam Ho of Bell Labs in 
1995.’ 

5.12 ml.svm: support vector machines 
‘In machine learning, support vector machines (SVMs, al-
so support vector networks) are supervised learning models 
with associated learning algorithms that analyze data and rec-
ognize patterns, used for classification and regression analysis. 
Given a set of training examples, each marked as belonging to 
one of two categories, an SVM training algorithm builds a 
model that assigns new examples into one category or the other, 
making it a non-probabilistic binary linear classifier. An SVM 
model is a representation of the examples as points in space, 
mapped so that the examples of the separate categories are di-
vided by a clear gap that is as wide as possible. New examples 
are then mapped into that same space and predicted to belong to 
a category based on which side of the gap they fall on.’ 

6. INITIAL TESTING  
A series of initial experiments were performed to test the func-
tionality of ml.lib within Max and PD for creative applications. 
These experiments were designed to be repeatable by students, 
artists, designers and other potential users with minimal re-
quirements besides Max and PD. The first three examples uti-
lize sensor data—specifically the three-axis accelerometer da-
ta—from a mobile phone. The tests were conducted by Momeni 
in the ArtFab, a mixed media design and fabrication lab at Car-



 

 

negie Mellon University. We employed the app TouchOSC7, 
which sends sensor values over UDP at a rate of 50Hz. The first 
three test applications classify the orientation of the phone in 
space, classify a continuous time-based gesture performed by 
the user with the phone in his/her hand, and allow continuous 
control of a complex parameterized audio-synthesis. The final 
example implements a powerful form of swept frequency 
acoustic sensing that allows the user to transform a passive rigid 
object into a gestural controller without any wires or typical 
sensors. These test applications were implemented in Max and 
PD, using only native objects and ml.lib, thus allowing our 
students to employ these techniques on a range of platforms 
including Max on personal computers and PD on Raspberry Pi8. 

6.1 Orientation Classification 
We developed a test application that allows the user to train a 
support vector machine in order to classify several orientations 
of a mobile phone based on its sensor data. In this example, the 
feature vectors put into the SVM are three-dimensional vec-
tors—or three-element lists in Max and PD—made up of the 
x/y/z accelerometer data from the phone and the classification 
indicates one of several orientations; this is therefore an exam-
ple of a 3-to-1 dimension mapping. The user trains the SVM by 
providing a number of examples for each orientation (about 10 
examples is sufficient for very accurate classification). While 
this classification task is perfectly feasible with traditional ap-
proaches using arithmetic scaling, our approach requires no pre- 
or post-processing of the data, thereby rendering the classifica-
tion task rather trivial for the user. This application is provided 
with the help-patch for the external ml.svm as a subpatch 
named ‘test’; the help patch also gives reference to a demon-
stration video shared on YouTube9. 

6.2 Gesture Classification 
We developed a test application that allows the user to train a 
dynamic time warping algorithm in order to classify several 
gestures performed by the user with a mobile phone in his/her 
hand. In this example, the input to the DTW engine is three-
dimensional time series—or a set of three-element lists in Max 
and PD—made up of the x/y/z accelerometer data from the 
phone, sampled at equal intervals. After the system is trained by 
providing an example of each gesture, the applications can ac-
curately classify new gestures. A noteworthy benefit of employ-
ing DTW for this task is the system’s invariance in relation to 
the speed with which the gesture is performed; slower or faster 
performances of the same gesture are recognized as well. This 
application is provided with the help-patch for the external 
ml.dtw as a subpatch named ‘test’; the help patch also gives 
reference to a demonstration video shared on YouTube9. 

6.3 Control of synthesis parameters 
We developed a test application that allows the user to train an 
artificial neural network (a multilayer perceptron or MLP) to 
generate parameters that control phase-aligned-formant synthe-
sis [25]. The synthesis is implemented as an abstraction in Max 
and PD with seven inputs (fundamental frequency, amplitude, 
filter center frequency, filter bandwidth, vibrato depth, vibrato 
frequency, and frequency shift). In this example, the input to the 
MLP is three-dimensional vector made up of the x/y/z accel-
erometer data from the mobile. The output of the network is a 

                                                
7 http://hexler.net/software/touchosc 
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seven-dimensional vector corresponding to the synthesis pa-
rameters. A training example for this application consists of the 
three-dimensional feature vector and the corresponding seven-
dimensional desired output vector (i.e the synthesis paramters). 
The system is therefore performing a 3-to-7 dimensional map-
ping. This approach to n-to-m mapping provides a useful coun-
terpart to a weighted-interpolation technique used to similar 
ends [23] as it provides opportunities for extrapolation, i.e. 
generating synthesis parameters that are outside of the range of 
possibilities achieved by mixing the predefined examples 
arithmetically. In our experience, these extrapolations can be 
very useful compositional discovery tools for synthesis schemes 
that have many parameters whose influence on the resulting 
sound is highly inter-related. This application is provided with 
the help-patch for the external ml.mlp as a subpatch named 
‘test’; the help patch also gives reference to a demonstration 
video shared on YouTube9. 

6.4 Acoustic Swept Frequency Sensing  
We developed a test application that implements Ono et al.’s 
Touch and Activate [25] in Max and PD. This technique allows 
users to transform passive rigid objects (e.g. a ceramic bowl, a 
wooden table, a series of Lego blocks) into sensing objects 
using swept-frequency acoustic sensing. In short, the technique 
involves injecting a swept-frequency signal above human hear-
ing into the object using a piezo element, and re-capturing the 
signal using a second piezo element. As Ono et al. show, touch-
ing the object in different ways affects the spectral content of 
the incoming signal in ways that an SVM can classify very 
accurately. This application is provided as a stand-alone patch 
and distributed with the ml.lib package; the patch also gives 
reference to a demonstration video shared on YouTube9. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper we have described the design, development and 
testing of a new library of machine learning externals for the 
Max and PD environments based on the C++ Gesture Recogni-
tion Toolkit. Our library, ml.lib provides a robust and efficient 
way to incorporate machine learning techniques into standard 
dataflow languages, and provides a sufficiently simple and con-
sistent interface to make it accessible to diverse range of users, 
including those with little machine learning experience, making 
it an ideal tool for teaching environments. Our initial tests with-
in the context of creative practice show that ml.lib is capable of 
handling a number of common use cases.  

At the time of writing ml.lib includes over 16 externals, which 
wrap most of the classification and regression classes provided 
by GRT, as well as including several custom externals for peak 
detection and minima and maxima extraction. Future work will 
include the development of wrappers for a wider range of func-
tionality provided by GRT, which includes clustering, pre- and 
post-processing and feature extraction. Also, whilst ml.lib cur-
rently provides extensive documentation in the form of help 
files and online information, we plan to supplement this with a 
range of use-case examples and tutorials. It is our aim to build a 
vibrant user community around the library, and to provide a 
forum for user-contributed content relating to the library. 

Finally, we plan to assess the user requirement for on-the-fly 
algorithm training. This would allow users to ‘add’ exemplars 
to ml.lib objects during live performance and to ‘train’ the algo-
rithms concurrently with other processes running in Max and 
PD, even for large datasets. This would be achieved by provid-
ing an asynchronous ‘train’ method implemented using a sepa-
rate thread. Additional future work will include more extensive 
end-user testing, the provision of in-environment unit tests, and 



 

 

‘sanity checks’ comparing outputs from ml.lib objects to results 
from the underlying GRT implementation. 
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