

ml.lib: Robust, Cross-platform, Open-source Machine
Learning for Max and Pure Data

Jamie Bullock
Birmingham Conservatoire
Birmingham City University

Paradise Place, B3 3HG
jamie.bullock@bcu.ac.uk

Ali Momeni
Carnegie Mellon University

CFA 300 – 5000 Forbes Ave
Pittsburgh, PA 15213
momeni@cmu.edu

ABSTRACT
This paper documents the development of ml.lib: a set of open-
source tools designed for employing a wide range of machine
learning techniques within two popular real-time programming
environments, namely Max and Pure Data. ml.lib is a cross-
platform, lightweight wrapper around Nick Gillian’s Gesture
Recognition Toolkit, a C++ library that includes a wide range
of data processing and machine learning techniques. ml.lib
adapts these techniques for real-time use within popular data-
flow IDEs, allowing instrument designers and performers to
integrate robust learning, classification and mapping approaches
within their existing workflows. ml.lib has been carefully de-
signed to allow users to experiment with and incorporate ma-
chine learning techniques within an interactive arts context with
minimal prior knowledge. A simple, logical and consistent,
scalable interface has been provided across over sixteen exter-
nals in order to maximize learnability and discoverability. A
focus on portability and maintainability has enabled ml.lib to
support a range of computing architectures—including ARM—
and operating systems such as Mac OS, GNU/Linux and Win-
dows, making it the most comprehensive machine learning
implementation available for Max and Pure Data.
Author Keywords
Machine Learning, Max, Pure Data, Gesture, Classification,
Mapping, Artificial Neural Networks, Support Vector Ma-
chines, Regression

ACM Classification
I.2.6 [Artificial Intelligence] Induction, H.5.5 [Information
Interfaces and Presentation] Sound and Music Computing.

1. INTRODUCTION
The term ‘Machine Learning’ refers to a scientific discipline and
associated range of techniques that explore the construction and study
of algorithms that can ‘learn’ from data through induction or ‘by
example’ [21]. Typically machine learning techniques are ‘black box’
systems that can deduce appropriate outputs from given inputs based
on a statistical model generated from sufficient and appropriate train-
ing data. Supervised machine learning algorithms take a set of labeled
feature vectors (lists of values that describe features of a class), which
are used to ‘train’ the machine learning algorithm and generate a
model. Once trained, a classification system can output an estimate
for the class of unlabeled feature vectors. In the case of regression
algorithms, a continuous value is given as output rather than a dis-
crete class. Unsupervised machine learning algorithms take a set of
unlabeled feature vectors and partition them into clusters based on

some measure of similarity.
Dataflow programming languages offer several important advantages
for the NIME community and its neighbors: first, they allow artists,
designers and researchers without a deep background in computer
science to experiment with complex computational ideas and develop
intricate systems for audio and video analysis, synthesis, gestural
control and more; second, in comparison with scripting based lan-
guages, dataflow programming languages allow for very rapid proto-
typing of multi-media software, albeit the mastery of these environ-
ments requires significant time and investment from the practitioners;
third, they allow for integration of a wide range media (e.g. sound,
image, physical computing, etc.) within the same environment and
with minimal modifications to the same blocks of code [31]; fourth,
by hiding certain low-level considerations of control programming
(e.g. threading, garbage collection, etc.) dataflow IDEs allow for
much more intricate control of time and rather intricate design of
time-based behavior; finally, the standard practice for Max and Pure
Data (PD) externals—compiled C/C++ code that adds functionality
to the standard distributions—to be accompanied by a help file—an
exemplary program that documents the external and offers and inter-
active example—make for a very suitable way to introduce new users
to machine learning; we have therefore invested significant time in
producing help files that convey a basic understanding of what each
of the ml.lib externals does.

The most widely used machine learning algorithms have long been
standardized and bindings in a broad range of programming lan-
guages are available. As an example: the most commonly used sup-
port vector machine library, Chang et al.’s libsvm [5] was first re-
leased in 2001 and iterated several times in the following decade, and
cited over 20,000 times according to Google Scholar. Its usage is
pervasive throughout human-computer interaction research. While a
number of researchers within the NIME community have document-
ed their experimentation with machine learning techniques (see
BACKGROUND), development remains scattered; a comprehen-
sive, open-source, cross-platform and user-friendly package for work-
ing with machine learning within dataflow environments does not
exist. In addition to this lack, the authors’ experiences as teachers
have also been an important motivation for this project: we note that
despite the level of ambition and sophistication in our students’ ap-
proaches to designing NIME, their approach to the general problem
of ‘mapping’ remains primarily within the realm of arithmetic or
discrete calculus at best. The documentation provided with ml.lib
therefore reframes some common mapping exercises from the class-
room (e.g. recognizing the orientation of a mobile phone based on its
three-dimensional accelerometer data) that require many arithmetic
operations, as trivial machine learning problems in an effort to con-
vey that machine learning is in fact approachable for a broad range of
users.

2. BACKGROUND
There is extensive use of machine learning within the domain of
sound and music research. Recent contributions to this field include
several categories of applications: gesture analysis, mapping and

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’15, May 31-June 3, 2015, Louisiana State University, Baton Rouge, LA.
Copyright remains with the author(s).

control of sound synthesis [2, 4, 12, 14, 16, 20, 22, 29] parsing and
segmentation [3], and algorithmic composition [6]. A number of
existing projects implement various machine learning techniques in
Max. As early as 1991, Wessel et al. implemented a real-tine artifi-
cial neural network for control of synthesis parameters in Max [30].
Later work from CNMAT includes Schmeder’s use of support vector
machines applied to pitch predictions [27]. The MnM toolbox from
Bevilacqua et al. implements ‘multidimensional linear mapping […]
as basic module to build complex n-to-m mapping’; the MnM pack-
age of Max externals also includes a principal component analysis
module which can also be of use in creating complex real-time map-
pings [1]. It is worth noting that MnM relies on FTM—a shared
library for Max for static and dynamic creation of complex data struc-
tures and therefore requires an additional step for integration into a
user’s workflow, a step that may be non-trivial depending on the
complexity of the user’s existing patch. Cont et al.’s range of work-
leading to the development of the sophisticated score-following en-
gine Antescofo [7, 8, 9, 11] are among the most advanced examples
of machine learning at work within the Max environment. Cont et al.
also created neural network implementation for PD, applied to ges-
ture mapping [10].Smith and Garnett developed a machine learning
library for Max that implements adaptive resonance theory, self-
organizing maps and spatial encoding [28].

A number of externals also exist for the PD environment. The most
coherent and widely-used being the ANN library by Davide Morelli1.
This consists of a multilayer perceptron and a time-delay network,
implemented as a wrapper around the widely-used FANN library
[24] and a self-organizing map implementation, featuring Instar,
Outstar and Kohonen learning rules. A Genetic Algorithm implemen-
tation has been developed by Georg Holzman using the flext frame-
work, and is therefore available for both Max and PD. There also
exists a k-NN (k’s nearest neighbor) external, originally developed by
Fujinaga and MacMillan [15] and now maintained by Jamie Bullock.
A plan was proposed to develop an SVM external as part of the 2009
Google Summer of Code2, but to the knowledge of the current au-
thors, this was never realized.

3. IMPLEMENTATION
Our design goals in implementing a suite of machine learning ex-
ternals are as follows:

• To provide an exhaustive range of machine learning tech-
niques for Max and PD

• To support the main hardware and software platforms
supported by Max and PD

• To make machine learning techniques usable and accessi-
ble, even for users with no prior knowledge

• To be efficient enough to run classification or regression in
firm real-time on CPU's from 700 MHz

• To develop a ‘standard’ implementation that would be
widely adopted and be maintained for the foreseeable fu-
ture

In addition to these design goals, a number of usage assumptions
were also made:

• That externals would operate in a context allowing read /
write to disk, allowing save / load of data models and other
state

1 http://bit.ly/morelli_ann
2

 http://bit.ly/pd_svm

• That users would be responsible for providing appropriate
pre- and post-processing steps, e.g. filtering, normalization

3.1. GRT
Given the range of existing machine learning libraries available for
C and C++, it was decided that given the limited development re-
sources available, the best approach would be to develop a wrapper
around an existing library rather than starting from scratch. An
initial survey was conducted and a range of libraries were consid-
ered including Dlib3, mlpack4 and Shark5. We also considered
using a collection of C libraries for example libsvm (for Support
Vector Machines). After considering the pros and cons of each
library, we decided to base ml.lib on the Gesture Recognition
Toolkit by Nick Gillian [17] due to its wide range of implemented
algorithms, simple design, straightforward C++ interface, pre- and
post-processing functions and orientation towards artistic applica-
tions, specifically real-time gesture analysis.

3.2. flext
Max and PD both provide C APIs for developing external ob-
jects. Whilst the APIs are superficially similar, there are enough
differences to mean that in supporting both environments, strat-
egies must be developed for effective code reuse. One approach
is to use C macros to conditionally include environment-
specific code blocks. This may be sufficient for smaller pro-
jects, but for larger projects it degrades readability and creates
an unnecessary maintenance burden. An alternative approach is
to use the flext API, by Thomas Grill [18], an abstract object-
oriented C++ interface that provides a common layer, compati-
ble with both Max and PD. flext is a compile-time dependency
meaning that it places no additional installation burden on the

end user. flext also has the advantage that through a relatively
modern OOP style, and a set of convenience functions, it ena-
bles the programmer to write leaner, more readable and more
maintainable code than is possible with the conventional C
APIs for Max and PD.

3.3. A Maintainable 'DRY' Wrapper
One of the goals of the project has been to develop a library that
is maintainable, and can be supported in the long term. The first
step in achieving this has been to make the source code availa-
ble under the GNU General Public License version 2 in a public
GitHub repository. This provides a well-managed workflow
enabling users and developers to file support issues, and to easi-
ly contribute to the project through GitHub ‘pull requests’,
which means patches can be reviewed before being incorpo-

3 http://dlib.net/ml.html
4 http://www.mlpack.org
5 http://image.diku.dk/shark

live

offline

algorithmtraining
vector

in-memory
model

“add”

stored
model

“train”

stored
data

“map”

“read / write”

in-memory
data

input
vector

output
value

Fig. 1 ml.lib common workflow (object messages in quotes)

rated into the codebase, whilst the GPL license forbids closed-
source forks that may prevent fixes and enhancements being
contributed back to their upstream sources.

Another strategy used to ensure maintainability was to adhere
strongly to DRY (don’t repeat yourself) principles in the devel-
opment of the wrapper code [19]. This was achieved by devel-
oping a number of generic abstract base classes (ml_base, ml,
ml_classification and ml_regression) implementing functionality
common to the majority of wrapped classes in the GRT library.
These classes exploit C++’s runtime polymorphism to call
common child class methods in GRT through a reference to a
base class instance returned by a concrete child. That is:
ml_classification and ml_regression must both implement the pure
virtual method get_MLBase_instance() and all children of
ml_classification and ml_regression must implement the pure virtual
methods get_Classifier_instance() and get_Regressifier_instance() re-
spectively. This means that all common functionality can be
implemented in ml_base, by calling methods through a reference
to GRT::MLBase from which the majority of GRT classes derive.
Only algorithm-specific attributes and methods are implement-
ed in children of ml_classification and ml_regression, making the
wrapper code very lean, readable and keeping repetition to a
minimum. The current ratio of wrapper code to original sources
is 5k SLOC to 41k SLOC or approximately 1:10.

4. LIBRARY DESIGN
From an end-user perspective, we aimed to provide the best
possible experience by maximizing learnability and discovera-
bility within the ml.lib library. This was achieved by establish-
ing a convention of consistent and logical object, message and
attribute naming, and by designing a simple and consistent
workflow across common object groups. In some cases, it was
sufficient to follow the well thought-out patterns established in
GRT, but in others further abstraction was necessary. Further-
more, the aim was not simply to wrap GRT, exposing every
detail of the GRT API, but rather to provide a somewhat ab-
stracted set of objects conforming to the idioms and user expec-
tations of dataflow environments. ml.lib objects follow the
naming convention ml.* where ‘*’ is an abbreviated form of the
algorithm implemented by the object.

Objects fall into one of six categories:
Pre-processing: pre-process data prior to used as input to a
classification or regression object
Post-processing: post-process data after being output from a
classification or regression object
Feature extraction: extract ‘features’ from control data. Fea-
ture vectors can be used as input to classification or regression
objects
Classification: take feature vectors as input, and output a value
representing the class of the input. For example an object de-
tecting hand position might output 0 for left, 1 for right, 2 for
top and 3 for bottom.
Regression: perform an M x N mapping between an input vec-
tor and an output vector with one or more dimensions. For ex-
ample an object may map x and y dimensions of hand position
to a single dimension representing the distance from origin (0,
0)
Clustering: partition N unlabeled vectors into M clusters
At the time of writing, classification, regression and several
feature extraction algorithms are implemented. Full details of
these are outlined in section 6.

In order to reduce complexity, and conform to usability best
practices a simple modeless workflow was devised (Fig. 1).
This workflow was based on an abstraction of the simplest pos-
sible steps required to add exemplars to a machine learning
system, train it, and use the trained model to map unknown
inputs to outputs. The aim of this workflow is to make machine
learning techniques usable on musical problems and by users
who are not machine learning experts. The ability to save and
load both data sets and trained models allows for easy compari-
son and debugging between data sets and algorithms. Although
threaded training is not yet implemented, training is very
quick—perceptually instantaneous in our tests (section 6)—
allowing for rapid ‘exploratory’ iterations for experimenting
with algorithm parameters as described in [13]. All classifica-
tion and regression objects in the library have exactly one inlet
and two outlets. The inlet accepts a number of common ‘meth-
od’ messages:

add <class> <values…> A method used to add training vectors as
exemplars for the machine learning algorithm, where <class> is
an integer identifying the class corresponding to a vector of 2 or
more values

train Once an adequate number of training vectors have been
added, this method is used to train the algorithm and generate
an in-memory model

write <path> Write the current in-memory training data and / or
model (if available) to file

read <path> Read the training data and / or model into memory
from file given by <path>

map <values…> Perform classification or regression on the input
vector given by <values…> and send the result to the left outlet

clear Remove in-memory training data and / or model

help Post information to the Max or PD console about supported
methods and attributes for the current object

For algorithms that deal explicitly with time series, such as
Dynamic Time Warping, an additional record message is used to
place the object in record mode (the one exception to the
modeless design)—vectors add-ed between record 1 and record 0
are treated as contiguous time series. The inlet can also be used
for setting the state of attributes. Here, the term ‘attributes’
refers to ‘stored object state’ following the flext convention, not
Max attributes. flext attributes can additionally be set using
object creation arguments, e.g. @scaling 1. There are many ob-
ject-specific attributes corresponding to the unique configura-
tion parameters of each ML algorithm. The only common at-
tributes are scaling (0/1), which toggles automatic pre-scaling for
input vectors and probs (0/1), which toggles the output of class
probabilities to the right outlet. The left outlet is used for classi-
fication and regression output values.

5. MAX AND PURE DATA EXTERNALS
Given that ml.lib primarily wraps the functionality of GRT, the
following sections (5.1–5.14) are based on the excellent GRT
official documentation6 (as indicated by single quotes), used
here with kind permission of the original author.

6 http://www.nickgillian.com/software/grt

5.1 ml.adaboost: Adaptive Boosting
‘AdaBoost (Adaptive Boosting) is a powerful classifier that
works well on both basic and more complex recognition prob-
lems. AdaBoost works by creating a highly accurate classifier
by combining many relatively weak and inaccurate classifiers.
AdaBoost therefore acts as a meta algorithm, which allows you
to use it as a wrapper for other classifiers.’

5.2 ml.dtree: Decision Trees
‘Decision Trees are conceptually simple classifiers that work
well on even complex classification tasks. Decision Trees parti-
tion the feature space into a set of rectangular regions, classify-
ing a new datum by finding which region it belongs to.’
‘A decision tree is a flowchart-like structure in which each in-
ternal node represents a “test” on an attribute (e.g. whether a
coin flip comes up heads or tails), each branch represents the
outcome of the test and each leaf node represents a class label
(decision taken after computing all attributes). The paths from
root to leaf represents classification rules.’

5.3 ml.dtw: dynamic time warping
‘The DTW algorithm is a supervised learning algorithm that can
be used to classify any type of N-dimensional, temporal signal.
The DTW algorithm works by creating a template time series
for each gesture that needs to be recognized, and then warping
the real-time signals to each of the templates to find the best
match. The DTW algorithm also computes rejection thresholds
that enable the algorithm to automatically reject sensor values
that are not the K gestures the algorithm has been trained to
recognize (without being explicitly told during the prediction
phase if a gesture is, or is not, being performed). In time series
analysis, dynamic time warping (DTW) is an algorithm for
measuring similarity between two temporal sequences, which
may vary in time or speed. For instance, similarities in walking
patterns could be detected using DTW, even if one person was
walking faster than the other, or if there were accelerations and
decelerations during the course of an observation. DTW has
been applied to temporal sequences of video, audio, and
graphics data—indeed, any data which can be turned into a
linear sequence can be analyzed with DTW.’

5.4 ml.gmm: Gaussian mixture models
‘The Gaussian Mixture Model Classifier (GMM) is basic but
useful supervised learning classification algorithm that can be
used to classify a wide variety of N-dimensional signals.’

5.5 ml.hmm: hidden Markov models
‘Hidden Markov Models are powerful classifiers that work well
on temporal classification problems when you have a large
training dataset.’

5.6 ml.knn: k-nearest neighbors
‘The K-Nearest Neighbor (KNN) Classifier is a simple classifi-
er that works well on basic recognition problems, however it
can be slow for real-time prediction if there are a large number
of training examples and is not robust to noisy data. In pattern
recognition, the k-Nearest Neighbors algorithm (or k-NN for
short) is a non-parametric method used
for classification and regression. In both cases, the input con-
sists of the k closest training examples in the feature space.’

5.7 ml.linreg: linear regression
‘In statistics, linear regression is an approach for modeling the
relationship between a scalar dependent variable y and one or
more explanatory variables denoted X. The case of one explana-
tory variable is called simple linear regression. For more than

one explanatory variable, the process is called multiple linear
regression.’

5.8 ml.logreg: logistic regression
‘Logistic regression measures the relationship between the cat-
egorical dependent variable and one or more independent varia-
bles, which are usually (but not necessarily) continuous, by
using probability scores as the predicted values of the depend-
ent variable.’

5.9 ml.mindist: minimum distance
‘The MinDist algorithm is a supervised learning algorithm that
can be used to classify any type of N-dimensional signal. The
MinDist algorithm works by fitting M clusters to the data from
each class during the training phase. A new sample is then clas-
sified by finding the class that has the cluster with the minimum
distance (Euclidean) to the new sample.’

5.10 ml.mlp: multi-layer perceptron
‘The MLP algorithm is a supervised learning algorithm that can
be used for both classification and regression for any type of N-
dimensional signal. A multilayer perceptron (MLP) is
a feedforward artificial neural network model that maps sets of
input data onto a set of appropriate outputs. A MLP consists of
multiple layers of nodes in a directed graph, with each layer
fully connected to the next one. ’

5.11 ml.randforest: random forests
‘Random Forests are an ensemble learning method that operate
by building a number of decision trees at training time and out-
putting the class with the majority vote over all the trees in the
ensemble. Random forests are an ensemble learning method
for classification (and regression) that operate by constructing a
multitude of decision trees at training time and outputting the
class that is the mode of the classes output by individual trees.
The algorithm for inducing a random forest was developed
by Leo Breiman and Adele Cutler, and ‘Random Forests’ is
their trademark. The term came from random decision for-
ests that was first proposed by Tin Kam Ho of Bell Labs in
1995.’

5.12 ml.svm: support vector machines
‘In machine learning, support vector machines (SVMs, al-
so support vector networks) are supervised learning models
with associated learning algorithms that analyze data and rec-
ognize patterns, used for classification and regression analysis.
Given a set of training examples, each marked as belonging to
one of two categories, an SVM training algorithm builds a
model that assigns new examples into one category or the other,
making it a non-probabilistic binary linear classifier. An SVM
model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are di-
vided by a clear gap that is as wide as possible. New examples
are then mapped into that same space and predicted to belong to
a category based on which side of the gap they fall on.’

6. INITIAL TESTING
A series of initial experiments were performed to test the func-
tionality of ml.lib within Max and PD for creative applications.
These experiments were designed to be repeatable by students,
artists, designers and other potential users with minimal re-
quirements besides Max and PD. The first three examples uti-
lize sensor data—specifically the three-axis accelerometer da-
ta—from a mobile phone. The tests were conducted by Momeni
in the ArtFab, a mixed media design and fabrication lab at Car-

negie Mellon University. We employed the app TouchOSC7,
which sends sensor values over UDP at a rate of 50Hz. The first
three test applications classify the orientation of the phone in
space, classify a continuous time-based gesture performed by
the user with the phone in his/her hand, and allow continuous
control of a complex parameterized audio-synthesis. The final
example implements a powerful form of swept frequency
acoustic sensing that allows the user to transform a passive rigid
object into a gestural controller without any wires or typical
sensors. These test applications were implemented in Max and
PD, using only native objects and ml.lib, thus allowing our
students to employ these techniques on a range of platforms
including Max on personal computers and PD on Raspberry Pi8.

6.1 Orientation Classification
We developed a test application that allows the user to train a
support vector machine in order to classify several orientations
of a mobile phone based on its sensor data. In this example, the
feature vectors put into the SVM are three-dimensional vec-
tors—or three-element lists in Max and PD—made up of the
x/y/z accelerometer data from the phone and the classification
indicates one of several orientations; this is therefore an exam-
ple of a 3-to-1 dimension mapping. The user trains the SVM by
providing a number of examples for each orientation (about 10
examples is sufficient for very accurate classification). While
this classification task is perfectly feasible with traditional ap-
proaches using arithmetic scaling, our approach requires no pre-
or post-processing of the data, thereby rendering the classifica-
tion task rather trivial for the user. This application is provided
with the help-patch for the external ml.svm as a subpatch
named ‘test’; the help patch also gives reference to a demon-
stration video shared on YouTube9.

6.2 Gesture Classification
We developed a test application that allows the user to train a
dynamic time warping algorithm in order to classify several
gestures performed by the user with a mobile phone in his/her
hand. In this example, the input to the DTW engine is three-
dimensional time series—or a set of three-element lists in Max
and PD—made up of the x/y/z accelerometer data from the
phone, sampled at equal intervals. After the system is trained by
providing an example of each gesture, the applications can ac-
curately classify new gestures. A noteworthy benefit of employ-
ing DTW for this task is the system’s invariance in relation to
the speed with which the gesture is performed; slower or faster
performances of the same gesture are recognized as well. This
application is provided with the help-patch for the external
ml.dtw as a subpatch named ‘test’; the help patch also gives
reference to a demonstration video shared on YouTube9.

6.3 Control of synthesis parameters
We developed a test application that allows the user to train an
artificial neural network (a multilayer perceptron or MLP) to
generate parameters that control phase-aligned-formant synthe-
sis [25]. The synthesis is implemented as an abstraction in Max
and PD with seven inputs (fundamental frequency, amplitude,
filter center frequency, filter bandwidth, vibrato depth, vibrato
frequency, and frequency shift). In this example, the input to the
MLP is three-dimensional vector made up of the x/y/z accel-
erometer data from the mobile. The output of the network is a

7 http://hexler.net/software/touchosc
8 http://www.raspberrypi.org
9 http://bit.ly/artfab_video

seven-dimensional vector corresponding to the synthesis pa-
rameters. A training example for this application consists of the
three-dimensional feature vector and the corresponding seven-
dimensional desired output vector (i.e the synthesis paramters).
The system is therefore performing a 3-to-7 dimensional map-
ping. This approach to n-to-m mapping provides a useful coun-
terpart to a weighted-interpolation technique used to similar
ends [23] as it provides opportunities for extrapolation, i.e.
generating synthesis parameters that are outside of the range of
possibilities achieved by mixing the predefined examples
arithmetically. In our experience, these extrapolations can be
very useful compositional discovery tools for synthesis schemes
that have many parameters whose influence on the resulting
sound is highly inter-related. This application is provided with
the help-patch for the external ml.mlp as a subpatch named
‘test’; the help patch also gives reference to a demonstration
video shared on YouTube9.

6.4 Acoustic Swept Frequency Sensing
We developed a test application that implements Ono et al.’s
Touch and Activate [25] in Max and PD. This technique allows
users to transform passive rigid objects (e.g. a ceramic bowl, a
wooden table, a series of Lego blocks) into sensing objects
using swept-frequency acoustic sensing. In short, the technique
involves injecting a swept-frequency signal above human hear-
ing into the object using a piezo element, and re-capturing the
signal using a second piezo element. As Ono et al. show, touch-
ing the object in different ways affects the spectral content of
the incoming signal in ways that an SVM can classify very
accurately. This application is provided as a stand-alone patch
and distributed with the ml.lib package; the patch also gives
reference to a demonstration video shared on YouTube9.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have described the design, development and
testing of a new library of machine learning externals for the
Max and PD environments based on the C++ Gesture Recogni-
tion Toolkit. Our library, ml.lib provides a robust and efficient
way to incorporate machine learning techniques into standard
dataflow languages, and provides a sufficiently simple and con-
sistent interface to make it accessible to diverse range of users,
including those with little machine learning experience, making
it an ideal tool for teaching environments. Our initial tests with-
in the context of creative practice show that ml.lib is capable of
handling a number of common use cases.

At the time of writing ml.lib includes over 16 externals, which
wrap most of the classification and regression classes provided
by GRT, as well as including several custom externals for peak
detection and minima and maxima extraction. Future work will
include the development of wrappers for a wider range of func-
tionality provided by GRT, which includes clustering, pre- and
post-processing and feature extraction. Also, whilst ml.lib cur-
rently provides extensive documentation in the form of help
files and online information, we plan to supplement this with a
range of use-case examples and tutorials. It is our aim to build a
vibrant user community around the library, and to provide a
forum for user-contributed content relating to the library.

Finally, we plan to assess the user requirement for on-the-fly
algorithm training. This would allow users to ‘add’ exemplars
to ml.lib objects during live performance and to ‘train’ the algo-
rithms concurrently with other processes running in Max and
PD, even for large datasets. This would be achieved by provid-
ing an asynchronous ‘train’ method implemented using a sepa-
rate thread. Additional future work will include more extensive
end-user testing, the provision of in-environment unit tests, and

‘sanity checks’ comparing outputs from ml.lib objects to results
from the underlying GRT implementation.

8. ACKNOWLEDGMENTS
Many thanks to Nick Gillian and Thomas Grill for their support
in the development of ml.lib.

9. REFERENCES
[1] Bevilacqua, F., Müller, R., & Schnell, N. (2005). MnM: a

Max/MSP mapping toolbox. Proceedings of the confer-
ence on New Interfaces for Musical Expression, 85–88.
National University of Singapore.

[2] Bevilacqua, F., Zamborlin, B., Sypniewski, A., Schnell,
N., Guédy, F., & Rasamimanana, N. H. (2009). Continu-
ous Realtime Gesture Following and Recognition. Gesture
Workshop, 5934 (7), 73–84.

[3] Caramiaux, B., Wanderley, M. M., & Bevilacqua, F.
(2012). Segmenting and Parsing Instrumentalists' Gestures.
Journal of New Music Research, 41(1), 13–29.

[4] Carrillo, A. P., & Wanderley, M. M. (2012). Learning and
extraction of violin instrumental controls from audio sig-
nal. Mirum, 25–30.

[5] Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A Library for
Support Vector Machines. ACM Transactions on Intelli-
gent Systems and Technology, 2(3), 27.

[6] Collins, N. (2012). Automatic Composition of Electroa-
coustic Art Music Utilizing Machine Listening. Computer
Music Journal, 36(3), 8–23.

[7] Cont, A. (2006). Realtime Audio to Score Alignment for
Polyphonic Music Instruments, using Sparse Non-
Negative Constraints and Hierarchical HMMS. IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing. Proceedings, 5, V–V.

[8] Cont, A. (2008a). Antescofo: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer
Music. In Proceedings of the International Computer Mu-
sic Conference, Ann Arbor.

[9] Cont, A. (2008b). Modeling Musical Anticipation: From
the Time of Music to the Music of Time. ProQuest.

[10] Cont, A., Coduys, T., & Henry, C. (2004). Real-time Ges-
ture Mapping in Pd Environment using Neural Networks.
Proceedings of NIME, 39–42.

[11] Cont, A., Wessel, D., & Dubnov, S. (2014). Realtime Mul-
tiple-pitch and Multiple-instrument Recognition For Music
Signals using Sparse Non-negative Constraints. In Pro-
ceedings of Digital Audio Effects Conference, Bordeaux,
France.

[12] Fiebrink, R., & Cook, P. R. (2010). The Wekinator: a sys-
tem for real-time, interactive machine learning in music. In
Proceedings of The Eleventh International Society for Mu-
sic Information Retrieval Conference. Utrecht.

[13] Fiebrink, R., Trueman, D., Britt, C., Nagai, M., Kaczma-
rek, K., Early, M., Daniel, M. R., Hege, A., and Cook, P.
R. (2010) Toward understanding human-computer interac-
tion in composing the instrument. In Proceedings of the In-
ternational Computer Music Conference.

[14] Françoise, J. (2013). Gesture-sound mapping by demon-
stration in interactive music systems. ACM Multimedia,
1051–1054.

[15] Fujinaga, I., & MacMillan, K. (2000). Realtime recogni-
tion of orchestral instruments. In Proceedings of the inter-
national computer music conference (141), 43.

[16] Gillian, N., Knapp, B., & O'Modhrain, S. (2011). A Ma-
chine Learning Toolbox For Musician Computer Interac-
tion. Proceedings of the conference on New Interfaces for
Musical Expression, 343–348.

[17] Gillian, N., & Paradiso, J. A. (2014). The gesture recogni-
tion toolkit. The Journal of Machine Learning Research,
15(1), 3483–3487.

[18] Grill, T. (2004). flext — C++ programming layer for
cross-platform development of PD and Max/MSP externals
An introduction In Proceedings of The second Linux Audio
Conference.

[19] Hunt, A., & Thomas, D. (2000). The pragmatic program-
mer: from journeyman to master. Addison-Wesley Profes-
sional.

[20] Knapp, R. B. (2011). Recognition Of Multivariate Tem-
poral Musical Gestures Using N-Dimensional Dynamic
Time Warping. Proceedings of the International Confer-
ence on New Interfaces for Musical Expression, 1–6.

[21] Kohavi, R., & Provost, F. (1998). Glossary of terms. Ma-
chine Learning, 30(2-3), 271–274.

[22] Malloch, J., Sinclair, S., & Wanderley, M. M. (2013).
Libmapper: (a library for connecting things). CHI Extend-
ed Abstracts, 3087–3090.

[23] Momeni, A., & Wessel, D. (2003). Characterizing and
Controlling Musical Material Intuitively with Geometric
Models. Proceedings of the conference on New Interfaces
for Musical Expression, 54–62.

[24] Nissen, S. (2003). Implementation of a fast artificial neural
network library (fann). Report.

[25] Ono, M., Shizuki, B., & Tanaka, J. (2013). Touch & acti-
vate. Presented at the the 26th annual ACM symposium,
New York, New York, USA: ACM Press, 31–40.

[26] Puckette, M. (1995). Formant-based audio synthesis using
nonlinear distortion. Journal of the Audio Engineering So-
ciety, 43(1), 40–47.

[27] Schmeder, A. W. (2004). Mapping Spectral Frames to
Pitch with the Support Vector Machine [electronic re-
source].

[28] Smith, B. D., & Garnett, G. E. (2012). Unsupervised play:
Machine learning toolkit for Max. Proceedings of the con-
ference on New Interfaces for Musical Expression.

[29] Van Nort, D., Wanderley, M. M., & Depalle, P. (2014).
Mapping Control Structures for Sound Synthesis: Func-
tional and Topological Perspectives. Computer Music
Journal, 38(3), 6–22.

[30] Wessel, D., Freed, A., & Lee, M. (1991). Real-
Time Neural Network Processing of Gestural and Acousti
csignals. Presented at the International Computer Music
Conference, 1–4.

[31] Zicarelli, D. (1991). Communicating with Meaningless
Numbers. Computer Music Journal, 15(4), 74–77.

