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ABSTRACT
In this paper, we examine the use of spatial layouts of musical
material for live performance control.   Emphasis is given to
software tools that provide for the simple and intuitive
geometric organization of sound material, sound processing
parameters, and higher-level musical structures.
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1. INTRODUCTION
Spatial arrangement is a natural way to organize things.
Similar objects or objects that belong together are placed
proximate to each other and dissimilar or disassociated
objects are kept at a distance.  Maps are useful for exploration
and without them we are quite likely to miss the most
interesting paths from here to there.  In this paper we describe
the development of some general tools that bring such
cognitively compelling spatial metaphors to the problem of
characterizing and controlling musical material in an intuitive
way.

Abstract geometric descriptions of musical material have been
around for some time.  Shepard [14], Krumhansl [5], and
Lerdahl [7] provide numerous examples of organizing pitch in
a spatial manner.   Cognitive psychologists have made
extensive use of techniques like multidimensional scaling to
map perceptual and cognitive structures. The study of music
perception and cognition has benefited greatly from such
techniques.   Timbre, rhythm, harmony, and texture spaces
have enriched our understanding of the behavior of musical
material [19].

Our goal goes beyond the search for insight into the
perceptual and cognitive structure of musical material.  We are
interested in musically expressive control in a real-time live-
performance context as well.  Geometric models of low
dimensionality, say one, two, or three dimensions, provide
natural hooks for a large class of controllers such as joysticks,
tablets, gloves, etc.   The problem is that most interesting
musical objects such as timbres, rhythms, and processing
algorithms have considerably higher dimensionality.   As a

result, musically sensible dimensionality reduction is a
central focus of our research.

In this paper we present a number of different musical material
spaces.  We describe tools that make their design easy and
their use in performance potentially musically expressive.
What is new about this work is that it brings spatial metaphor
modeling and dimensional reduction techniques to the actual
practice of composing and performing music.  

1. HISTORY
The application of multidimensional scaling and related
geometric models to audio has a long and rich history and we
can touch on but a few of the highlights here.    Most of the
early studies in the 1960's [9, 10] were carried out by
experimental psychologists interested in understanding the
mechanisms of auditory perception.   Many of the these early
studies were purely psychoacoustic in character involving
steady state tones and had little direct application to music or
even the study of music perception.   Other studies, like that of
Wedin and Goode [17] used tones from traditional acoustic
instruments but were not really carried out with an application
to composition in mind.  The first published reference we are
aware of to the compositional application of multidimensional
scaling was made by Milton Babbitt [1].

In the early 1970's one of the authors [20] proposed that the
spatial layouts of timbres from multidimensional scaling
could function as a palette of musical material whose
organization could provide intuitive navigational advice to
the composer.   John Grey followed suit with his landmark PhD
thesis and subsequent experiments [3].  After a number of
experimental replications confirmed the basic structure of a
timbre space for harmonic acoustic instrument sounds playing
the same pitch and loudness [21] the challenge was to show
that the spatial layout could actually make predictions about
perception of musically viable sequences.  Wessel
demonstrated that auditory stream formation and rhythmic
organization of klangfarben sequences could be predicted
from a timbre space.  It was also demonstrated that a timbre
space could be used to specify perceivable timbral
transpositions [8, 21].

In 1978, Jean-Claude Risset created a timbre space using
multidimensional scaling and used it to compose passages of
his work Mirages for the Ensemble Intercontemporain.  This
we believe to be the first application of the technique to a
large-scale composition.   This piece was performed in the
concerts celebrating the official opening of IRCAM that fall.



Other compositional applications followed but admittedly the
practice of using perceptual spaces for composition has not
fallen into general use.  The technique, as it was, is far too
tedious.

1. MOTIVATION AND JUSTIFICATION
Our goal here is the make the use of geometric models for the
characterization and eventual control of musical material more
approachable. The first thing that had to go was the tedium of
making pair-wise dissimilarity judgments.  Consider that if we
wish to work with a 100 different percussion sounds by the
classical methods we would be required to make 4950
dissimilarity judgments.  The second necessity is a user
interface that combines the process of producing the geometric
model with the use of the space in real-time performance.

In the mid 1980’s experiments in laying out two-dimensional
timbre spaces by arranging the sound objects on a screen
proved successful.

The spaces laid out in this simple intuitive manner were shown
to be very much like those generated by the multidimensional
scaling of pair-wise dissimilarity judgments [6, 18].  Further
justification for this spatial layout technique is provided by
Goldstone [2].

1. SOFTWARE IMPLEMENTATION  AND
APPLICATIONS
A space designer and explorer was implemented using Cycling
74’s Max/MSP and Jitter software.  The main patch, named
space-master, allows one to design a 2-d perceptual space
made up of a number of objects.  Each object can be a recorded
sample, a single number, or a list of numbers.  Each data point
is also the center of a Gaussian kernel, whose value at any
given point in the space indicates the weight of its associated
data point in the interpolated mixture.  The result is a 2-d
space that allows weighted interpolation among all data points
based on the values of the Gaussian kernels at each point in
the space.  This implementation aimed to meet several design
goals: 1) one unified environment for both design and
exploration of a space, 2) a space-designing environment that
allows auditioning and real-time adjustments in locations and
weights of each data point, 3) the ability to manage large sets
of data, 4) the possibility of compelling and mutable graphic
representations, 5) the ability to automate movements in the
space, 6) the ability to easily save, recall and adjust any
parameter in the spaces and to switch among spaces with ease,
and 7) the ability communicate with other applications for
building, modifying or analyzing spaces.  The introduction of
Jitter, a set of externals for Max/MSP that allow storage,
manipulation and visualization of matrices, made these design
goals possible.

1.1 Designing And Using a Space
This section describes the process of designing a space,
entering data into the space and using the space.  We go into
some detail about the data storage methods used in this
implementation, as well as some programming details specific
to the Max/MSP/Jitter environment.

1.1.1 What Is a Space?
A space is made up of a set of Gaussian kernels whose centers,
amplitudes and standard deviations are specified by the user.
Each Gaussian kernel is associated with a list of floating point

numbers—coordinates in a high-dimensional space—that are
also specified by the user.  The space is visualized in two
dimensions by an image that is a bird’s-eye projection of all
the Gaussian kernels onto a plane.  The space is also visualized
by a 3-d surface plot of the kernels.

1.1.1 Creating a Space
The process of designing a space begins by opening the patch
space-master (Figure 1).  The user first defines the “list-
length” parameter (dimensionality) and places a desired
number of points onto the space using the patch’s graphical
interface.  
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Figure 1.  The figure shows the main interface for the space-
master patch.  The large black square is the space being
designed; the five rectangular objects in the space are five
one-point abstractions; the two sliders behind each one-
point’s ID number (1 through 5) are the Gaussian kernel’s
amplitude and standard deviation.  The figure shows the 2-d
representation of these kernels as colored regions whose
center is beneath the top left corner of each one-point
abstraction.  

The patch dynamically creates—or destroys—an abstraction
called one-point for each data point in the space.  At its
creation time, each one-point instance is given an ID number
and is linked to the main patch.  Each one-point abstraction
has its own user interface which includes sliders for the
amplitude and standard deviation of the Gaussian kernel as
well as a color swatch for the graphical representation of the
kernel.   With the main patch in “edit” mode, the user then
moves each one-point instance to a desired location in the
space, selects an amplitude and standard deviation for the
kernel, selects a color and clicks the “+” button in the top left
of the abstraction.  This creates a Gaussian kernel centered at
that point (the current mouse location) and links that kernel to
the data point whose “+” button was clicked.  The background



image of the space is updated to show a 2-d representation of
all the kernels in the space by mapping the height of the
kernels to a brightness scale applied to the selected color of
that kernel. For more accurate visualization of the Gaussian
kernels, space –master also renders the kernels in 3-d (Figure
2).  Gaussian or similar kernels provide not only a mechanism
for interpolation but also for extrapolation beyond the
perimeter of the points in the space.

Figure 2.  This figure shows a 3-d representation of the same
space as that in Figure 1.  The color of each Gaussian kernel
corresponds to its color in the 2-d representation.

Auditioning while designing a space is a necessary capability.
In our implementation, each one-point has a button labeled “?”
which, when clicked, sends that one-point’s ID to a global
receiver named space-master-doer.  The destination receive
object can then reside in any other Max/MSP patch and
perform any desired playback, synthesis or calculation that i s
appropriate to the space at hand.

Once the space is created, the user puts the patch in “swim”
mode; this converts the image representing the space in 2-d to
a JPEG format image file.  This image is assigned as the
background image for a ‘pictslider’ graphical interface object,
a 2 dimensional slider that allows interaction using the mouse
or incoming control values.  

The space is now ready to be saved; after providing a filename
(we will use the name simpletest.space for this example) and
pressing the “W” button, 4 files are created on the hard disk:
three .jxf files (Jitter’s binary file format for matrices) that
contain the space, data, and points matrices, and a JPEG file
with an image of the 2-d representation of the space. A naming
convention is used for consistency: a space by the name of
simpletest.space would be comprised of four files:

• simpletest.space.points.jxf

• simpletest.space.data.jxf

• simpletest.space.space.jxf

• simpletest.space.space.jpeg

1.1.2 Entering Data into the Space
In certain applications of spatial layouts, the weight of each
data point at any given coordinate in the space is all that i s
necessary for performing the interpolation (e.g. see section
4.2.1 below).  For these applications, the space is now
complete and ready to be used.  However, this system also
allows each point to represent a list of floating point numbers;
it then uses the weight of each data point at a space coordinate
as a weight for its associated list in the overall weighted-
interpolated mixture of all the lists.  For these applications,
the user must also provide the lists of floating point numbers
among which to interpolate.

Now that the points have been placed in the space and kernels
have been created, we are ready to enter data into the data-
matrix for the space.  This is done within the Max/MSP
programming environment by making an instance of the
space-master patch with an argument indicating the name of
the space, e.g. simpletest.space.  The user communicates with
the space-master  patch using a set of OpenSoundControl
messages [22].  For entering data into the space the message
‘/store’ is used:  the ‘/store’ messages must be followed by an
integer and a list of floating point numbers.  The list is then
linked to the data point whose ID is the provided integer.  For
example, ‘/store 3 0.2 1.4 .8’ would store the list ‘0.2 1.4 .8’ as
the data for point number 3 in the space.

Once the user has entered lists for all of the points in the space,
the space is ready to be used to interpolate among the lists.

1.1.3 Interpolating Among Stored Lists
The ‘/lookup’ message is used for triggering calculations by
space-master.  The message ‘/lookup’ must be followed by two
integers.  These integers represent the x and y coordinates in
the space at which we wish to make an interpolation.  
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Figure 3.  A Max/MSP patch that stores 5 lists into space-
master and then uses a two dimensional slider to interpolate
between the lists.



The ‘/lookup x y’ message will output a list of numbers
between 0 and 1 that represent the normalized values of each
kernel at the point (x, y) in the space.  This list comes out of
the space-master’s second outlet.  In a space with 5 data points
this list would have 5 items.  The ‘/lookup x y’ message will
also trigger the patch to calculate the resulting weighted
interpolation between all stored lists.  That is, the normalized
value of each point’s kernel at (x, y) is used as the weight for
that point’s associated list in the weighted-interpolated list.
The calculated list comes out of the first outlet of space-
master (Figure 3).

1.1.4 Data Storage
The main patch uses three Jitter matrices to store all of the data
associated with a space:  

• data-matrix: A 2-d, 1-plane matrix whose rows contain
the lists of floating point numbers among which we want
to interpolate; in a space with 5 points where each point
represents a list of 10 numbers, this would be a 10x5
matrix.  

•  space-matrix: A 3-d, 1-plane matrix that contains the
height of the 2-d Gaussian surface for each data point in
the space.  By default, the designed interpolation spaces
are 128x128 points in size; therefore, in our example
space with 5 lists of 10 items, this would be 128x128x5
matrix.  

• points-matrix:  A 1-d, 9-plane matrix whose cells contains
all the information associated with each data point in the
space:

1) Whether or not the point is active

2) Size of interpolation space (default 128)

3-4) x and y location of the point in the space

5-6) Amplitude and standard deviation of the
Gaussian kernel

7-9) RGB values for the point’s graphic
representation

This matrix it is used to reconstruct a space for making
changes.

The three .jxf files created when the user saves a space
correspond to the above three matrices.

It is worthy noting that the chosen data storage mechanism not
only makes calculations efficient within Max/MSP, it also
provides a hook for creating spaces in other applications
besides Max/MSP.  Although the described method for
creating spaces is extremely useful for designing with one’s
intuition (i.e. spaces based on subjective similarity measures),
it can be impractical for very large sets of data.  There are,
however, numerous computational techniques in the large
body of research that addresses the fundamental problem of
dimensionality, that allow one to derive locations in a 2-d
space from large sets of high-dimensional data.  These
algorithms are often implemented in applications like MatLab.
We have developed a number of auxiliary Max/MSP patches
which translate matrices exported from another application as
delimited text files, into Jitter matrices ready to be used by
space-master.  

1.1.5 More Detailed Notes on Max/MSP/Jitter
Implementation
When designing a space, the one-point abstractions created for
each point in the space are instantiated using Max/MSP
scripting capabilities. Each instance is connected to the main
patch using ‘send’ and ‘receive’ objects.  ‘Send’ and ‘receive’
objects are used as opposed to Max’s patch-chords in order to
have a less cluttered space-designing environment.
Furthermore, each one-point abstraction is instantiated as a
‘bpatcher’; this allows the user to see the abstraction’s own
interface and adjust parameters for that point.

The entire functionality of space-master is accessible through
a set of OpenSoundControl messages [22].    The patch space-
master understands a large number of OSC messages including
read/write commands, clearing commands, turning
interpolation on/off, turning 3-d rendering on/off,
adding/removing/modifying data points and their kernels.
The technique of using OSC as a communications scheme
allows efficient management of multiple spaces within one
application [23].

All data storage for space-master is done using Jitter matrices.
This allows us to work with dimensionalities and numbers of
points in the space that are larger than 256, Max’s inherent
limit on the number of items in a list.  In addition to using
Max’s lists for entering data into the data-matrix, data can also
be entered using the name of a Jitter matrix after the ‘/store n’
message.  Similarly, the weighted interpolated list produced
by space-master  is output as a 1-d, 1-plane Jitter matrix
containing 32-bit floating points, again to avoid the 256-item
limit of lists in Max.  The matrix can be easily converted to a
list using the ‘jit.spill’ object.

Jitter’s OpenGL functionality brings the benefits of hardware-
accelerated 3-d graphics and its amenities like the ability to
freely rotate the 3-d objects or zoom in and out of the surface
plots.  To take advantage of this feature, the 3-d representation
of the space rendered by space-master  is produced using
OpenGL.

1.2 APPLICATIONS
Numerous applications of the interpolation technique were
developed using Max/MSP and Jitter.  These applications,
which are generally in the form of real-time performance
instruments, aim to provide the composer/performer with
high-level control of a process that functions in a high-
dimensional space, that is, a process that has a large number of
control parameters.  The described system allowed us to use
our musical intuition to define the spaces.  This in turn made
performing with these spaces intuitive and rewarding.

1.2.1 Drum Space: Timbre Space of Percussion
Samples
A simple application of this interpolation technique is a 2-d
timbre space designed to interpolate among percussive
sounds.  The strong similarity in the amplitude envelopes for
percussive hits contributes to very effective fusing between
the sounds and thereby makes them ideal candidates for
weighted-amplitude mixing. These samples, 38 low sounding
membranophones ranging from tympanis and concert bass
drums to a south Indian mirdangam and a classic Roland 808
kick drum, were laid out subjectively on the 2-d space to
achieve the musical goal of a continuous space of low drum
sounds that contains interesting mixtures (Figure 4).  
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Figure 4.  Each colored region in the space represents an
audio sample of a low drum.  As the user navigates around
the space, the list of normalized weights at that coordinate in
the space is output from space-master’s second output.  Each
time playback is triggered, the values in this list are used to
weigh the amplitudes of the corresponding samples in the
mixture.

In this example, the list of normalized weights at a given
coordinate in the space is the only required data for producing
a weighted mix of the samples; in other words, the data matrix
in this space is empty.  List interpolation was therefore turned
off to preserve computation power.  

An additional parameter in the patch designates how many
samples to mix at a time.  Experimentation proved that it was
computationally wasteful to mix any more than 5-7 samples at
a time since the relative amplitudes for samples beyond the
strongest 5-7 contributors were low enough to render them
unnoticeable in the mix.  

1.2.2 Res Space: Timbre Space Based on
Transformations of Resonance Models
Models of resonance provide an efficient and highly mutable
approach to sound synthesis.  CNMAT’s resonators~ object
for Max/MSP [4] supply an implementation of parallel banks
of 2-pole resonators and a set of possible transformations for
existing models.  When provided with a  frequency, an
amplitude and a decay-rate for each frequency component in
the resonance model, resonators~ efficiently models a bank of
resonating filters with the given parameters that can then be
excited by an impulse, enveloped noise or other audio signals.
The res-transform [4] object allows one to apply global
transformations to a resonance model by way of a large number
of scaling, adding, or component producing functions.
Together they allow musicians to produce an extremely wide
range of sounds from one set of data, usually derived from
analysis of a recorded sound.  

One obstacle to finding musically satisfying results with
resonators~  and res-transform  is the complexity of the
interdependencies between various transformation parameters.

For instance, the ‘spectral-slope’ and ‘spectral-corner’
parameters to res-transform work together to redistribute
energy to different parts of the frequency spectrum.  Similarly
‘cluster-size’, ‘frequency-around’, ‘attenuation-spread’ and
‘rate-spread’ all contribute to the interesting timbres and
intricate beating patterns that result when additional
frequency components are created from ones already extant in
the model.  Furthermore, parameters like ‘rate-scale’ (which
changes the decay rates of the frequency components) can
significantly affect the perceptual loudness of the model.  
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A timbre space was produced around the resonance model of a
tympani and eight transformations of that model (Figure 5). In
addition to the unaffected model consisting of 50 frequency,
amplitude, decay-rate triplets, eight additional models were
produced by carefully exploring what res-transform can do to
the model; specifically, additional models were found by
experimenting with the following eight parameters of res-
transform: ‘spectral-slope’, ‘spectral-corner’, ‘rate-scale’,
‘gain-scale’, ‘frequency-scale’, ‘frequency-add’, ‘cluster-size’,
‘frequency-around’, ‘frequency-spread’.  Desirable sets of
these res - t rans form  parameters were then stored and
interpolated among using space-master (Figure 6).

Two features of this approach to managing related models of
resonance are noteworthy: first, interesting musical results are
quite often found when exploring the space in between the
known regions.  In regard to live performance control, this
provides not only a continuously mutable model for synthesis
of percussive sounds, it also opens the way for countless new
sonic possibilities derived from those designed by the
composer.  Second, the use of Gaussian kernels—as opposed
to Euclidian distance for instance—is crucial in this
application.   Since many of the transformations apply
frequency-scaling to the model, using weight function that are
not adjustable by way of a parameter like standard deviation
would result in a timbre space that is filled with glissandi. In
our experience, continuously changing pitch adds a
transparent synthetic quality to the sound which detracts from
the efficacy of the instrument a drum-like entity.  By using
adjustable Gaussian kernels, however, these glissandi can be
effectively localized to one region of the space.

It is worth noting that a timbre space of resonances could also
be constructed by interpolating among the much larger lists of
frequency/amplitude/decay-rate for each model (as opposed to
interpolating among lists of res-transform parameters).  The
advantage of this approach is that one could use completely
unrelated models as the points in the space.  The
disadvantages are: first, since the models are unrelated
effectively localizing the aforementioned glissando problem
and still getting a satisfying level of blending between the
models becomes much more difficult; second, since a
timbrally rich model often requires at least 30 frequency
components (i.e. yielding 90 floating point numbers to
represent each model), the interpolation among them becomes
much more computationally intensive.

1.2.3 Reverb Space
We step away now from the realm of synthesis and into that of
processing.  In the recent years it has become feasible to
provide very high quality reverberation entirely in software.
This is evident in numerous high quality reverberators now
available in the form of VST plugins in use in many
professional studios.  The parameter space for these units,
however, is often very high in dimensionality and therefore
difficult to maneuver beyond simply switching from one
preset to another.  In another application of our
dimensionality reduction technique, a space of reverb settings
was constructed to control TrueVerb, room modeler developed
by Waves (Figure 8).  

Figure 8.  The user interface for the VST plugin Waves
TrueVerb Room Modeler.  This plugin, like many other high
quality processing units has a large number of finely
adjustable parameters—too many to control independently
in real-time.  

TrueVerb, which “combines two separate modules - an Early
Reflections simulator, and a Reverb - to produce a high
quality, natural-sounding room effect” [16] has a total of 45
parameters.  As composers and performers interested in having
high-level control over reverberation without having to
manage 45 knobs, we developed a patch that contains a reverb
space with six regions corresponding to six distinct settings
of the TrueVerb module (Figure 9).  Moving about in this 2-d
reverb space shifts from the sound of a small hall, through that
of a dampened practice room, and into a lush stadium. Changes
occur gradually and smoothly, in a way that would be
impossible to reproduce if the parameters were to be controlled
individually in real-time.
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Figure 9.  Patch developed to interpolate among various
reverb settings of the VST plugin TrueVerb by Waves.  



1.2.4 Grain Space: Amplitude Envelopes,
Waveforms, Durations and Harmonic Content of
Granular Clouds
A real-time performance instrument was developed around the
concept of granular clouds (Figure 10) [12].  The instrument i s
a generalized granular synthesizer that polyphonically
produces grains of sound, that is enveloped waveforms with a
given frequency, amplitude and durations.  It uses probability
tables to select the duration and pitch of each grain while the
amplitude envelope and the waveform are results of space-
master interpolations.  Four separate space-master modules
with the following contents were used:

1. Five amplitude envelope types
2. Nine 512-sample wave tables for the waveform
3. Five different probability tables for duration
4. Fourteen different probability tables for the pitch

Each time the instrument is triggered, it probabilistically
chooses a duration between 10ms-3000ms, a frequency
between 40HZ-5000HZ, and it uses the current interpolated
waveform and amplitude envelope to play a grain.  Each
instance of this instrument uses a 64-voice polyphonic player
to allow extremely dense clouds of grains whose control
parameters are controlled in real-time using the spatial
arrangement.  
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Figure 10.   The graphical interface for the Grain Space
instrument.  The four colored spaces in the top area of the
patch correspond to amplitude envelope, probabilistic grain
duration, probabilistic grain pitch, and the waveform in the
grain.  The smaller interface objects below each space (with
the exception of the “harmony” space) show the current
interpolated mix.  The interface comprised of a keyboard
and set of sliders visualizes the current interpolated
probability distribution for the grain’s pitch.  Note that an
additional ‘jiggle’ parameter is provided for each space to
allow for slight—or drastic—deviations in the parameters
of the grain by jiggling the location in each interpolation
space by a given percentage.

In performance, it is possible to use multiple instances of this
instrument too produce contrasting granular clouds with
entirely different sets of parameters.

1.2.5 Beat Space: High-level Control of Rhythmic
Material Using Spatial Layouts
A real-time instrument was developed to allow performance of
probabilistic variations derived from a simple accent pattern.
For an example of this instrument’s usage we choose the
omnipresent west African bell pattern:

We represent this rhythm as the duration vector

[2 2 1 2 2 2 1]

where the eighth note is the lowest duration-value, represented
by the number 1 in the above vector.  The patch then assigns
probabilities to each beat in the pattern.  Beats that contained
hits in the original pattern are assigned high probabilities,
while the beats in between are assigned low ones.  Working
with probability ranges between 0 and 1, the above pattern
would be deterministically represented the probability vector

[1 0 1 0 1 1 0 1 0 1 0 1]

Note that there are a total of 12 probabilities, each
corresponding to a beat in the pattern; the 1’s represent eighth
note slots where there was a hit and the 0’s represent rests.

The patch then creates a perceptual space comprised of 5
regions (Figure 11).  The region in the center represents the
original pattern by way of the above deterministic beat-wise
probability vector.  The region to the right represents the
opposite, a probability vector emphasizing all of the beats
missing in the original patter, that is,

which is represented by the beat-wise probability vector:

[0 1 0 1 0 0 1 0 1 0 1 0]

The region at the top of the space is assigned the densest
possible pattern made of the minimal pulse value (every
eighth notes’s probability equal to 1) and the region to the
bottom the opposite (every eighth note’s probability equal to
0).  The region to the left is initially assigned the same
probability values as the original pattern, but is reserved for
user-defined probability.  The user can draw a new probability
vector and click the button to the left of the probability
display to store the probability vector in the region in the left
of the space.  By navigating within this space, the user is able
to produce rhythmic patterns that range in level of
syncopation in relation to the original pattern (from center to
right of space) and overall density (the vertical axis of the
space).
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Figure 11. The interface for the Beat Space instrument.  The
perceptual space is made up of 5 regions whose associated
data is calculated by the patch each time a new rhythmic
pattern is entered into the patch.  



1.2.6 Boids Space: Perceptual Space for the
Parameters of a Bird Flocking Algorithm
A real-time performance instrument was developed that
utilized Eric Singer’s Max/MSP implementation [15] of Craig
Reynolds’s famous bird flocking algorithm [11].  This
Max/MSP externals, named Boids, models the flight path of a
designated number of birds with regard to a set of 17
parameters (e.g. centering tendency, maximum speed, inertia,
repelling tendency, etc.).  Different settings of these parameters
give very particular results in the overall shape and movement
of the flock (Figure 12).

Figure 12.  This figure shows three different arrangements of
the parameters to the Boids bird flocking algorithm.  Each
black dot represents the location of a “boid” in the flock’s
flight area.  As parameters for the algorithm are changed,
the flight tendencies of individual birds change, thereby
changing the overall shape and behavior of the entire flock.  

In the Boids Space instrument, designed for live interaction
with a MIDI piano, each bird was represented in sound by one
voice of a resonators~-based synthesizer.   The vertical
position of the bird was mapped to quantized tempo, and the
horizontal position to pitch register.  Pitch material was
extracted in real-time from the MIDI piano, and applied to the
current pitch register of each bird. The performer using Boids
Space controls the attraction point for the flock of birds, as
well as the overall flocking tendencies by way of a perceptual
space made up of seven predefined sets of Boids’ parameters
(Figure 13).  He also controls the overall amplitude and
resonance for the synthesizers, The overall effect was a
tremendous amount high-level of control over number of
independent voices.  By navigating the space for the Boids
algorithm’s parameters, it was possible to find interesting
regions of varying rhythmic and registral correspondence.
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Figure 13.  The interface for the Boids Space Instrument.
The 2 dimensional slider on the left controls the attraction
point for the flock of birds, the colored space on the right
allows the user to interpolate among seven different sets of
parameters to the Boids algorithm.  Average distance
between the Boids was calculated and mapped to
reverberation wetness.  

1.2.7 SPACE Space
Finally, we introduce the notion of creating spaces of spaces.
As conveyed by a number of the previous examples,
sophisticated applications of geometric arrangements in
performance environments can involve multiple perceptual
spaces in one instrument. The same method of dimensionality
reduction that is applied to each individual perceptual space
can also be applied to the entire system in order to organize
specific arrangements of the individual components.
Specifically, a space of spaces can be created by using a
mother-space to interpolate between sets of coordinates in the
daughter spaces (Figure 13).  For example, in order to control
four daughter-spaces with one mother-space, one would store
8-membered lists that contains desirable x-y coordinates for
each daughter-space in the mother-space and interpolate
between these lists.  The result is an even higher level of
control over a system with a very high number of parameters,
by way of navigation in a space that has only two dimensions.  

Figure 13.  This figure depicts the notion of creating spaces
of spaces.  The larger space in the center allows one to
interpolate among sets of coordinates in the 4 smaller spaces
below.  Each of the smaller spaces subsequently controls the
parameters to a different musical process.

2. CONTROLLERS
Use of gestural controllers for real-time performance is an
ongoing focus of research at CNMAT as well as in the
interactive computer music community in general.  At CNMAT
we have developed a great deal of software for controllers like
the Buchla Thunder, Saitek Cyborg 3D Joysticks and Wacom
drawing tablets.  The reduction of high-dimensional parameter
spaces down to 2 dimensions has proved to be an extremely
effective technique for controlling real-time computer
instruments at a high level.  The paradigm is simple: gestural
controllers translate a performer’s physical gestures in space
into streams of data for controlling musical processes.
Although some controllers can output more than 3 unique
streams of data as a result of a single physical gesture, they
most often result in 1 to 3 dimensions of control data.  In order
to allow intimate control over a sophisticated musical process,
it is often necessary to control many more parameters than a
simple one-to-one mapping of a controller allows.  Let us take
the task of controlling reverb by way of a Wacom drawing
tablet as an example.  The Wacom interface serves as a good
example because it in fact outputs five continuous streams of
data from a single gesture with the pen (horizontal and vertical
position, 2 dimensions of tilt, and pressure).  However, even
with such rich output from the controller, a one to one
mapping of its five dimensions to a high quality reverberator



like Waves TrueVerb would give the performer very little
control, for the reverb unit has not five but 45 parameters.  It i s
also worth mentioning that with the Wacom tablet, as is the
case with many other controllers that output more than 3
continuous streams from the same gesture, it can be
exceedingly difficult to reliably reproduce a gesture in
performance.  On the other hand, the horizontal and vertical
positions alone can be mapped to a perceptual reverb space
like the one described earlier, thereby giving the performer full
control over this process with maximal accuracy and
reliability in the gesture-to-control mapping.  Furthermore,
visual feedback of the process under control by the performer
becomes a much simpler problem when the controllers
physical existence in 3 dimensions is directly correlated with
an intuitively laid out perceptual space that functions in 2
dimensions.  

3. FUTURE  WORK
Besides building more real-time instruments that make use of
graphical layouts of high-dimension spaces, we intend to
experiment with performing transformations on the spaces in
real-time.  That is, by moving points around in the space or by
transforming their kernels, one can find entirely different sets
of interpolated results from the same data set.  These
transformations would not only expand the palette of musical
capabilities that an instrument has, they could also elucidate
structural similarities and dissimilarities in the data that may
not have been evident in the original spatial layout.

We also plan to work more with purely numerical techniques
for creating spaces.  The technique of Locally Linear
Embedding as demonstrated by Sam T. Roweis and Lawrence K.
Saul’s work [13] seems extremely promising in its
applications to our work with real-time instruments and our
desire to organize and perform with very large sets of data.
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